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ABSTRACT—In past years, cloud storage systems saw an enormous rise in usage. However, despite their 
popularity and importance as underlying infrastructure for more complex cloud services, today‘s cloud storage 

systems do not account for compliance with regulatory, organizational, or contractual data handling requirements by 

design. Since legislation increasingly responds to rising data protection and privacy concerns, complying with data 

handling requirements becomes a crucial property for cloud storage systems. We present PRADA, a practical 

approach to account for compliance with data handling requirements in key-value based cloud storage systems. To 

achieve this goal, PRADA introduces a transparent data handling layer, which empowers clients to request specific 

data handling requirements and enables operators of cloud storage systems to comply with them. We implement 

PRADA on top of the distributed database Cassandra and show in our evaluation that complying with data handling 

requirements in cloud storage systems is practical in real-world cloud deployments as used for microblogging, data 

sharing in the Internet of Things, and distributed email storage. 
 

I. INTRODUCTION 

NOW A DAYS, many web services outsource the 

storage of data to cloud storage systems. While this 

offers multiple benefits, clients and lawmakers 

frequently insist that storage providers comply with 

different data handling requirements (DHRs), ranging 

from restricted storage locations or durations [1], [2] to 

properties of the storage medium such as full disk 
encryption [3], [4]. However, cloud storage systems do 

not support compliance with DHRs today. Instead, the 

selection of storage nodes is primarily optimized 

towards reliability, availability, and performance, and 

thus mostly ignores the demand for DHRs. Even worse, 

DHRs are becoming increasingly diverse, detailed, and 

difficult to check and enforce [5], while cloud storage 

systems are becoming more versatile, spanning 

different continents [6] or infrastructures [7], and even 

second-level providers [8]. Hence, clients cannot ensure 

compliance with DHRs when their data is outsourced to 
cloud storage systems. This apparent lack of control is 

not merely an academic problem. Since customers have 

no influence on the treatment of their data in today‘s 

cloud storage systems, a large set of customers cannot 

benefit from the advantages offered by the cloud. The 

Intel IT Center surveys [9] among 800 IT professionals, 

that 78% of organizations have to comply with 

regulatory mandates. Again, 78% of organizations are 

concerned that cloud offers are unable to meet their 

requirements. In consequence, 57% of organizations 

actually refrain from outsourcing regulated data to the 

cloud. The lack of control over the treatment of data in 
cloud storage hence scares away many clients. This 

especially holds for the healthcare, financial, and 

government sectors [9]. Supporting DHRs enables these 

clients to dictate adequate treatment of their data and 

thus allows cloud storage operators to enter new 

 
markets. Additionally, it empowers operators to 

efficiently handle differences in regulations [10] (e.g., 

data protection). Although the demand for DHRs is 
widely acknowledged, practical support is still severely 

limited [9], [11], [12]. Related work primarily focuses 

on DHRs while processing data [13], [14], [15], limits 

itself to location requirements [16], [17], or treats the 

storage system as a black box and tries to coarsely 

enforce DHRs from the outside [12], [18], [19]. 

Practical solutions for supporting arbitrary DHRs when 

storing data in cloud storage systems are still missing – 

a situation that is disadvantageous to clients and 

operators of cloud storage systems. 

 

 Contributions. 

In this paper, we present PRADA, a general key-value 

based cloud storage system that offers rich and practical 
support for DHRs to overcome current compliance 

limitations. Our core idea is to add one layer of 

indirection, which flexibly and efficiently routes data to 

storage nodes according to the imposed DHRs. We 

demonstrate this approach along classical key-value 

stores, while our approach also generalizes to more 

advanced storage systems. Specifically, we make the 

following contributions: 

1) We comprehensively analyze DHRs and the 

challenges they impose on cloud storage systems. Our 

analysis shows that a wide range of DHRs exist, which 
clients and operators of cloud storage systems have to 

address. 

2) We present PRADA, our approach for supporting 

DHRs in cloud storage systems. PRADA adds an 

indirection layer on top of the cloud storage system to 

store data tagged with DHRs only on nodes that fulfill 

these requirements. Our design of PRADA is 
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incremental, i.e., it does not impair data without DHRs. 

PRADA supports all DHRs that can be expressed as 

properties of storage nodes as well as any combination 
thereof. As we show, this covers a wide range of actual 

use cases. 

3) We prove the feasibility of PRADA by implementing 

it for the distributed database Cassandra (we make our 

implementation available [20]) and by quantifying the 

costs of supporting DHRs in cloud storage systems. 

Additionally, we show PRADA‘s applicability in a 

cloud deployment along three real-world use cases: a 

Twitter clone storing two million authentic tweets, a 

distributed email store handling half a million emails, 

and an IoT platform persisting 1.8 million IoT 

messages. 

 

SCOPE OF THE PROJECT 

We present PRADA, a practical approach to account for 

compliance with data handling requirements in key- 

value based cloud storage systems. To achieve this goal, 

PRADA introduces a transparent data handling layer, 

which empowers clients to request specific data 
handling requirements and enables operators of cloud 

storage systems to comply with them. We implement 

PRADA on top of the distributed database Cassandra 

and show in our evaluation that complying with data 

handling requirements in cloud storage systems is 

practical in real-world cloud deployments as used for 

micro blogging, data sharing in the Internet of Things, 

and distributed email storage. 

 

OBJECTIVE 

In this paper, we present PRADA, a general key-value 

based cloud storage system that offers rich and practical 

support for DHRs to overcome current compliance 

limitations. Our core idea is to add one layer of 
indirection, which flexibly and efficiently routes data to 

storage nodes according to the imposed DHRs. We 

demonstrate this approach along classical key-value 

stores, while our approach also generalizes to more 

advanced storage systems 

 

II. RELATED WORK 

We categorize our discussion of related work by the 

different types of DHRs they address. In addition, we 

discuss approaches for providing assurance that DHRs 

are respected. Distributing storage of data. To enforce 

storage location requirements, a class of related work 

proposes to split data between different storage systems. 

Wuchner et al. [12] and  ̈Cloud Filter [18] add proxies 
between clients and operators to transparently distribute 

data to different cloud storage providers according to 

DHRs, while NubiSave [19] allows combining 

resources of different storage providers to fulfill 

individual redundancy or security requirements of 

clients. These approaches can treat individual storage 

systems only as black boxes. Consequently, they do not 

support fine grained DHRs within the database system 

itself and are limited to a small subset of DHRs. Sticky 
policies. Similar to our idea of specifying DHRs, the 

concept of sticky policies proposes to attach usage and 

obligation policies to data when it is outsourced to 

third-parties [31]. In contrast to our work, sticky 

policies mainly concern the purpose of data usage, 

which is primarily realized using access control. One 

interesting aspect of sticky policies is their ability to 

make  them  ―stick‖  to  the  corresponding  data  using 

cryptographic measures which could also be applied to 

PRADA. In the context of cloud computing, sticky 

policies have been proposed to express requirements on 

the security and geographical location of storage nodes 
[32]. However, so far it has been unclear how this could 

be realized efficiently in a large and distributed storage 

system. With PRADA, we present a mechanism to 

achieve this goal. Policy enforcement. To enforce 

privacy policies when accessing data in the cloud, 

Betge-Brezetz et al. [13] monitor ´ access of virtual 

machines to shared file systems and only allow access if 

a virtual machine is policy compliant. In contrast, Itani 

et al. [14] propose to leverage cryptographic 

coprocessors to realize trusted and isolated execution 

environments and enforce the encryption of data. 
Espling et al. [15] aim at allowing service owners to 

influence the placement of their virtual machines in the 

cloud to realize specific geographical deployments or 

provide redundancy through avoiding co-location of 

critical components. These approaches are orthogonal 

to our work, as they primarily focus on enforcing 

policies when processing data, while PRADA addresses 

the challenge of supporting DHRs when storing data in 

cloud storage systems. Location-based storage. 

Focusing exclusively on location requirements, 

Peterson et al. [16] introduce the concept of data 

sovereignty with the goal to provide a guarantee that a 
provider stores data at claimed physical locations, e.g., 

based on measurements of network delay. Similarly, 

LoSt [17] enables verification of storage locations 

based on a challenge-response protocol. In contrast, 

PRADA focuses on the more fundamental challenge of 

realizing the functionality for supporting arbitrary 

DHRs. Controlling placement of data. Primarily 

focusing on distributed hash tables, SkipNet [74] 

enables control over data placement by organizing data 

mainly based on string names. Similarly, Zhou et al. 

[75] utilize location-based node identifiers to encode 

physical topology and hence provide control over data 

placement at a coarse grain. In contrast to PRADA, 

these approaches need to modify the identifier of data 

based on the DHRs, i.e., knowledge about the specific 

DHRs of data is required to locate it. Targeting 

distributed object-based storage systems, CRUSH [76] 

relies on hierarchies and data distribution policies to 
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control placement of data in a cluster. These data 

distribution policies are bound to a predefined hierarchy 

and hence cannot offer the same flexibility as PRADA. 
Similarly, Tenant-Defined Storage [77] enables clients 

to store their data according to DHRs. However and in 

contrast to PRADA, all data of one client needs to have 

the same DHRs. Finally, Swift Analytics [78] proposes 

to control the placement of data to speed up big data 

analytics. Here, data can only be put directly on 

specified nodes without the abstraction provided by 

PRADA‘s approach of supporting DHRs. Hippocratic 

databases. Hippocratic databases store data together 

with a purpose specification [79]. This allows them to 

enforce the purposeful use of data using access control 

and to realize data retention after a certain period. Using 
Hippocratic databases, it is possible to create an 

auditing framework to check if a database is complying 

with its data disclosure policies [33]. However, this 

concept only considers a single database and not a 

distributed setting where storage nodes have different 

data handling capabilities. Assurance. To provide 

assurance that storage operators adhere to DHRs, de 

Oliveira et al. [80] propose an architecture to automate 

the monitoring of compliance to DHRs when 

transferring data. Bacon et al. [34] and Pasquier et al. 

[5] show that this can also be achieved using 

information flow control. Similarly, Massonet et al. [41] 

propose a monitoring and audit logging architecture in 

which the infrastructure provider and service provider 

collaborate to ensure data location compliance. These 

approaches are orthogonal to our work and could be 
used to verify that operators of cloud storage systems 

run PRADA in an honest way and error-free. 

 

III. DATA COMPLIANCE IN CLOUD 

STORAGE 

With the increasing demand for sharing data and storing 

it at external parties [22], obeying with DHRs becomes 

a crucial challenge for cloud storage systems [11], [12], 

[23]. To substantiate this claim, we outline our setting 

and rigorously analyze existing and potentially future 
DHRs. Based on this, we derive goals that must be 

reached to adequately support DHRs in cloud storage 

systems. 

 Setting 

We tackle the challenge of supporting DHR compliance 

in cloud storage systems which are realized over a set of 
nodes in different data centers [24]. To explain our 

approach in a simple yet general setting, we assume that 

data is addressed by a distinct key, i.e., a unique 

identifier for each data item. Key-value based cloud 

storage systems [25], [26], [27] provide a general, good 

starting point, since they are widely used and their 

underlying principles have been adopted in more 

advanced cloud storage systems [28], [29], [30]. We 

discuss how our approach can be applied to other types 

of cloud storage systems in Section 11. As a basis for 

our discussion, we illustrate our setting in Figure 1. 

Clients (end users and companies) insert data into 
Compliance with DHRs has to be realized by the 

operator of the cloud storage system. Only the operator 

knows about the characteristics of the storage nodes and 

can thus make the ultimate decision on which node to 

store a specific data item. Different works exist that 

propose cryptographic guarantees [14], accountability 

mechanisms [33], information flow control [5], [34], or 

virtual proofs of physical reality [35] to relax trust 

assumptions on the operator, i.e., providing the client 

with assurance that DHRs are (strictly) adhered to. Our 

goals are different: Our main aim is for functional 

improvements of the status quo. Thus, these works are 
orthogonal to our approach and can possibly be 

combined if the operator is not sufficiently trusted. 

 

 Data Handling Requirements 

We analyze DHRs from client and operator perspective 

and identify common classes, as well as the need to 

support also future and unforeseen requirements. Client 

perspective. DHRs involve constraints on the storage, 

processing, distribution, and deletion of data in cloud 
storage. These constraints follow from legal (laws and 

regulations) [36], [37], contractual (standards and 

specifications) [38], or intrinsic requirements (user‘s or 

company‘s individual privacy requirements) [39], [40]. 

Especially for businesses, compliance with legal and 

contractual obligations is important to avoid serious 

(financial) consequences [41]. Location requirements 

relate to the storage location of data. On one hand, these 

requirements address concerns raised when data is 

stored outside of specified legislative boundaries [2], 

[11]. The EU‘s General Data Protection Regulation 

[37], e.g., forbids the storage of personal data in 
jurisdictions with an insufficient level of privacy 

protection. Also other legislation, besides data 

protection law, can impose restrictions on the storage 

location. German tax legislation, e.g., forbids the 

storage of tax data outside of the EU [23]. On the other 

hand, clients, especially corporations, can impose 

location requirements. To increase robustness against 

outages, a company might demand to store replicas of 

their data on different continents [39]. Furthermore, an 

enterprise could require that sensitive data is not stored 

at a competitor for fear of accidental leaks or deliberate 
breaches [40]. 

 

 Goals 

Our analysis of real-world demands for DHRs based on 

legislation, business interests, and future trends 

emphasizes the importance to support DHRs in 

distributed cloud storage. We now derive a set of goals 

that any approach that addresses this challenging 

situation should fulfill: Comprehensiveness: To address 
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a wide range of DHRs, the approach should work with 

any DHRs that can be expressed as properties of storage 

nodes and support the combination of different DHRs. 
In particular, it should support the requirements in 

Section 2.2 and be able to adapt to new DHRs. Minimal 

performance effort: Cloud storage systems are highly 

optimized and trimmed for performance. Thus, the 

impact of DHR support on the performance of a cloud 

storage system should be minimized. Cluster balance: 

In existing cloud storage systems, the storage load of 

nodes can easily be balanced to increase performance. 

Despite having to respect DHRs (and thus limiting the 

set of possible storage nodes), the storage load of 

individual storage nodes should be kept balanced. 

Coexistence: Not all data will be accompanied by 
DHRs. Hence, data without DHRs should not be 

impaired by supporting DHRs, i.e., it should be stored 

in the same way as in a traditional cloud storage system. 

 

IV. SYSTEM OVERVIEW 

The problem that has prevented support for DHRs so 

far stems from the common pattern used to address data 

in key-value based cloud storage systems: Data is 

addressed, and hence also partitioned (i.e., distributed to 

the nodes in the cluster), using a designated key. Yet, 

the responsible node (according to the key) for storing a 

data item will often not fulfill the client‘s DHRs. Thus, 
the challenge addressed in this paper is how to realize 

compliance with DHRs and still allow for key-based 

data access. To tackle this challenge, the core idea of 

PRADA is to add an indirection layer on top of a cloud 

storage system. We illustrate how we integrate this 

layer into existing cloud storage systems in Figure 2. If 

a responsible node cannot comply with stated DHRs, 

we store the data at a different node, called target node. 

To enable the lookup of data, the responsible node 

stores a reference to the target for specific data. As 

shown in Figure 2, we introduce three new components 
(capability, relay, and target store) to realize PRADA. 

Capability store: The global capability store is used to 

look up nodes that can comply with a specific DHR. 

Here, the operator of the cloud storage systems 

specifies for each node in the cluster which DHR 

properties this node can fulfill. To speed up lookups in 

the capability store, each node keeps a local copy of the 

complete capability store. This approach is feasible, as 

information on DHRs is comparably small and consists 

of rather static information. Depending on the 

individual cloud storage system, distributing this 

information can be realized by pre configuring the 
capability store for a storage cluster or by utilizing the 

storage system itself for creating a globally replicated 

view of node capabilities. We consider all DHRs that 

describe static properties of a storage node and range 

from rather simplistic properties such as storage 

location to more advanced capabilities such as the 

support for deleting data at a specific date. Relay store: 

Each node operates a local relay store containing 

references to data stored at other nodes. More precisely, 
it contains references to data the node itself is 

responsible for but does not comply with the DHRs. For 

each data item, the relay store contains the key of the 

data, a reference to the node at which the data is stored, 

and a copy of the DHRs. Target store: Each node stores 

data that is redirected to it in a target store. The target 

store operates exactly as a traditional data store, but 

allows a node to distinguish data that falls under DHRs 

from data that does not. Alternatives to adding an 

indirection layer are likely not viable for scalable key- 

value based cloud storage systems: Although it is 

possible to encode very short DHRs in the key used for 
data access [23], this requires knowledge about DHRs 

of a data item to compute the key for accessing it and 

disturbs load balancing. Alternatively, replication of all 

relay information on all nodes of a cluster allows nodes 

to derive relay information locally. This, however, 

severely impacts scalability of the cloud storage system 

and reduces the total storage amount to the limited 

storage space of single nodes. Integrating PRADA into 

a cloud storage system requires us to adapt storage 

operations (e.g., creating and updating data) and to 

reconsider replication, load balancing, and failure 
recovery strategies in the presence of DHRs. In the 

following, we describe how we address these issues 

 

V. CLOUD STORAGE OPERATIONS 

The most important modifications of PRADA involve 

the CRUD (create, read, update, delete) operations. In 

the following, we describe how we integrate PRADA 

into the CRUD operations of our cloud storage model 

(cf. Section 2.1). We assume that queries are processed 

on behalf of the client by one of the nodes in the cluster, 
the coordinator node (as common in cloud storage 

systems [26]). Each node of the cluster can act as 

coordinator for a query and clients use the capability 

store to select a coordinator that complies with the 

requested DHRs. If no DHRs need to be considered, 

clients select a coordinator based on performance 

metrics such as proximity. For reasons of clarity, we 

postpone the discussion of the impact of different 

replication factors and load balancing decisions to 

Section 5 and 6, respectively. 

 

VI. REPLICATIONS 

Cloud storage systems employ replication to realize 

high availability and data durability [26]: Instead of 

storing a data item only on one node, it is stored on r 

nodes (typically, with a replication factor 1 ≤ r ≤ 3). In 
key-value based storage systems, the r nodes are chosen 

based on the key of data (see Section 3). When 

complying with DHRs, we cannot use the same 

replication strategy. In the following, we thus detail 
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how PRADA realizes replication instead. Creating data. 

Instead of selecting only one target, the coordinator 

picks r targets out of the eligible nodes. The coordinator 
sends the data to all r targets and the list of all r targets 

to the r responsible nodes (according to the replication 

strategy of the cloud storage system). Consequently, 

each of the r responsible nodes knows about all r targets 

and can update its relay store accordingly. 

Reading data. 

To process a read request, the coordinator forwards the 

read request to all responsible nodes. A responsible 
node that receives a read request for data it does not 

store locally looks up the targets in its relay store and 

forwards the read request to one of the r target nodes. 

To ensure that each target node receives a request, each 

responsible node uses the same consistent mapping 

between responsible and target nodes which is 

computed based on node identifiers. Each target that 

receives a read request sends the requested data to the 

coordinator for this request. If a read query is reissued 

due to a failure (cf. Section 7), each responsible node 

will forward the request to all r target nodes to increase 
reliability. Impact on reliability. To successfully process 

a query in PRADA, it suffices if one responsible node 

and one target node are reachable. Thus, PRADA can 

tolerate the failure of up to r − 1 responsible nodes and 

up to r − 1 target nodes. 

 

VII. IMPLEMENTATIONS 

For the practical evaluation of our approach, we fully 

implemented PRADA on top of Cassandra [26] (our 

implementation is available under the Apache License 

[20]). Cassandra is a distributed database that is actively 

employed as a key-value based cloud storage system by 

more than 1500 companies with deployments of up to 

75 000 nodes [53] and offers high scalability even over 
multiple data centers [54], which makes it especially 

suitable for our scenario. Cassandra also implements 

advanced features that go beyond simple key-value 

storage such as column-orientation and queries over 

ranges of keys, which allows us to showcase the 

flexibility and adaptability of our design. Data in 

Cassandra is divided into multiple logical databases, 

called key spaces. A key space consists of tables which 

are called column families and contain rows and 

columns. Each node knows about all other nodes and 

their ranges of the hash table. Cassandra uses the 
gossiping protocol Scuttlebutt [50] to efficiently 

distribute this knowledge as well as to detect node 

failure and exchange node state, e.g., load information. 

Our implementation is based on Cassandra 2.0.5, but 

our design conceptually also works with newer 

versions. Information stores. PRADA relies on three 

information stores: the global capability store as well as 

relay and target stores (cf. Section 3). We implement 

these as individual key spaces in Cassandra as detailed 

in the following. First, we realize the global capability 

store as a key space that is globally replicated among all 

nodes (i.e., each node stores a full copy of the capability 
store to improve performance of create operations) 

initialized at the same time as the cluster with 

deployments of up to 75 000 nodes [53] and offers high 

scalability even over multiple data centers [54], which 

makes it especially suitable for our scenario. Cassandra 

also implements advanced features that go beyond 

simple key-value storage such as column-orientation 

and queries over ranges of keys, which allows us to 

showcase the flexibility and adaptability of our design. 

Data in Cassandra is divided into multiple logical 

databases, called key spaces. A key space consists of 

tables which are called column families and contain 
rows and columns. Each node knows about all other 

nodes and their ranges of the hash table. Cassandra uses 

the gossiping protocol Scuttlebutt [50] to efficiently 

distribute this knowledge as well as to detect node 

failure and exchange node state, e.g., load information. 

Our implementation is based on Cassandra 2.0.5, but 

our design conceptually also works with newer 

versions. 

 

Information stores. 

PRADA relies on three information stores: the global 

capability store as well as relay and target stores (cf. 

Section 3). We implement these as individual key 

spaces in Cassandra as detailed in the following. First, 

we realize the global capability store as a key space that 

is globally replicated among all nodes (i.e., each node 
stores a full copy of the capability store to improve 

performance of create operations) initialized at the same 

time as the cluster. On this key space, we create a 

column family for each DHR type (as introduced in 

Section 2.2). When a node joins the cluster, it inserts all 

DHR properties it supports for each DHR type (as 

locally configured by operator of the cloud storage 

system) into the corresponding column family. This 

information is then automatically replicated to all other 

nodes in the cluster by the replication strategy of the 

corresponding key space. For each regular key space of 
the database, we additionally create a corresponding 

relay store and target store as key spaces. Here, the 

relay store inherits the replication factor and replication 

strategy from the corresponding regular key space to 

achieve replication for PRADA as detailed in Section 5, 

i.e., the relay store will be replicated in exactly the same 

way as the regular key store. Hence, for each column 

family in the corresponding key space, we create a 

column family in the relay key space that acts as the 

relay store. We follow a similar approach for realizing 

the target store, i.e., we create for each key space a 

corresponding key space to store actual data. For each 
column family in the original key space, we create an 

exact copy in the target key space to act as the target 
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store. However, to ensure that DHRs are adhered to, we 

implement a DHR-agnostic replication mechanism for 

the target store and use the relay store to address data. 
While the global capability store is created when the 

cluster is initiated, relay and target stores have to be 

created whenever a new key space and column family is 

created, respectively. To this end, we hook into 

Cassandra‘s Create Key space Statement class for 

detecting requests for creating key spaces and column 

families and subsequently initialize the corresponding 

relay and target stores. 

 

Creating data and load balancing 
To allow clients to specify their DHRs when inserting 

or updating data, we support the specification of 

arbitrary DHRs in textual form for INSERT requests 

(cf. Section 2.1). To this end, we add an optional postfix 

WITH REQUIREMENTS to INSERT statements by 

extending the grammar from which parser and lexer for 

CQL3 [55], the SQL-like query language of Cassandra, 

are generated using ANTLR [56]. Using the WITH 

REQUIREMENTS statement, arbitrary DHRs can be 

specified separated by the keyword AND, e.g., INSERT 

... WITH REQUIREMENTS location = { ‘DE‘, ‘FR‘, 
‘UK‘ } AND encryption = { ‘AES-256‘ }. In this 

example, any node located in Germany, France, or the 

United Kingdom that supports AES-256 encryption is 

eligible to store the inserted data. This approach enables 

users to specify any DHRs covered by our formalized 

model of DHRs (cf. Section 2.2). To detect and process 

DHRs in create requests (cf. Section 4), we extend 

Cassandra‘s Query Processor, specifically its get 

Statement method for processing INSERT requests. 

When processing requests with DHRs (specified using 

the WITH REQUIREMENTS statement), we base our 

selection of eligible nodes on the global capability 
store. Nodes are eligible to store data with a given set of 

DHRs if they provide at least one of the specified 

properties for each requested type (e.g., one out of 

multiple permitted locations). We prioritize nodes that 

Cassandra would pick without DHRs, as this speeds up 

reads for the corresponding key later on, and otherwise 

choose nodes according to our load balancer (cf. 

Section 6). Our load balancing implementation relies on 

Cassandra‘s gossiping mechanism [26], which 

maintains a map of all nodes together with their 

corresponding loads. We access this information using 
Cassandra‘s get Load Info method and extend the load 

information with local estimators for load changes. 

Whenever a node sends a create request or stores data 

itself, we update the corresponding local estimator with 

the size of the inserted data. To this end, we hook into 

the methods that are called when data is modified 

locally or forwarded to other nodes, i.e., the 

corresponding methods in Cassandra‘s Modification 

Statement, Row Mutation Verb Handler, and Storage 

Proxy classes as well as our methods for processing 

requests with DHRs. 

 

Reading data 

To allow reading redirected data as described in Section 

4, we modify Cassandra‘s Read Verb Handler class for 

processing read requests at the responsible node. This 

handler is called whenever a node receives a read 
request from the coordinator and allows us to check 

whether the current node holds a reference to another 

target node for the requested key by locally checking 

the corresponding column family within the relay store. 

If no reference exists, the node continues with a 

standard read operation. Otherwise, the node forwards a 

modified read request to one deterministically selected 

target node (cf. Section 5) using Cassandra‘s 

sendOneWay method, in which it requests the data from 

the respective target on behalf of the coordinator. 

Subsequently, the target nodes send the data directly to 

the coordinator node (whose identifier is included in the 
request). To correctly resolve references to data for 

which the coordinator of a query is also the responsible 

node, we additionally add corresponding checks to the 

Local Read Runnable subclass of Storage Proxy. 

 

VIII. RESULTS 
 

FIG:1 ALL USERS DETAILS 
 

FIG 2: ACCEPT NEW FILES DETAILS 
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FIG 3: DELETED FILES 

 

IX. DISCUSSION AND CONCLUSION 
Accounting for compliance with data handling 

requirements (DHRs), i.e., offering control over where 

and how data is stored in the cloud, becomes 

increasingly  important due to  legislative, 

organizational, or customer demands. Despite these 

incentives, practical solutions to address this need in 

existing cloud storage systems are scarce. In this paper, 

we proposed PRADA, which allows clients to specify a 

comprehensive set of fine-grained DHRs and enables 

cloud storage operators to enforce them. Our results 

show that we can indeed achieve support for DHRs in 

cloud storage systems. Of course, the additional 
protection and flexibility offered by DHRs comes at a 

price: We observe a moderate increase for query 

completion times, while achieving constant storage 

overhead and upholding a near optimal storage load 

balance even in challenging scenarios. Importantly, 

however, data without DHRs is not impaired by 

PRADA. When a responsible node receives a request 

for data  without DHRs, it can locally check that no 

DHRs apply to this data: For create requests, the 

INSERT statement either contains DHRs or not, which 

can be checked efficiently and locally. In contrast, for 
read, update, and delete requests, PRADA performs a 

simple and local check whether a reference to a target 

node for this data exists. The overhead for this step is 

comparable to executing an if statement and hence 

negligible. Only if a reference exists, which implies that 

the data was inserted with DHRs, PRADA induces 

overhead. Our extensive evaluation confirms that, for 

data without DHRs, PRADA shows the same query 

completion times, storage overhead, and bandwidth 

consumption as an unmodified Cassandra system in all 

considered settings (indistinguishable results for 
Cassandra and PRADA* in Figures 5 to 8.) 

Consequently, clients can choose (even at a granularity 

of individual data items), if DHRs are worth a modest 

performance decrease. PRADA‘s design is built upon a 

transparent indirection layer, which effectively handles 

compliance with DHRs. This design decision limits our 

solution in three ways. First, the overall achievable load 

balance depends on how well the nodes‘ capabilities to 

fulfill certain DHRs matches the actual DHRs requested 

by the clients. However, for a given scenario, PRADA 
is able to achieve nearly optimal load balance as shown 

in Figure 10. Second, indirection introduces an 

overhead of 0.5 round-trip times for reads, updates, and 

deletes. Further reducing this overhead is only possible 

by encoding some DHRs in the key used for accessing 

data [23], but this requires everyone accessing the data 

to be in possession of the DHRs, which is unlikely. A 

fundamental improvement could be achieved by 

replicating all relay information to all nodes of the 

cluster, but this is viable only for small cloud storage 

systems and does not offer scalability. We argue that 

indirection can likely not be avoided, but still pose this 
as an open research question. Third, the question arises 

how clients can be assured that an operator indeed 

enforces their DHRs and no errors in the specification 

of DHRs have occurred. This has been widely studied 

[16], [33], [41], [80] and the proposed approaches such 

as audit logging, information flow control, and provable 

data possession can also be applied to PRADA. While 

we limit our approach for providing data compliance in 

cloud storage to key-value based storage systems, the 

key-value paradigm is also general enough to provide a 

practical starting point for storage systems that are 
based on different paradigms. Additionally, the design 

of PRADA is flexible enough to extend (with some 

more work) to other storage systems. For example, 

Google‘s globally distributed database Spanner (rather a 

multi-version database than a key-value store) allows 

applications to influence data locality (to increase 

performance) by carefully choosing keys [28]. PRADA 

could be applied to Spanner by modifying Spanner‘s 

approach of directory-bucketed key-value mappings. 

Likewise, PRADA could realize data compliance for 

distributed main memory databases, e.g., VoltDB, 

where tables of data are partitioned horizontally into 
shards [29]. Here, the decision on how to distribute 

shards over the nodes in the cluster could be taken with 

DHRs in mind. Similar adaptations could be performed 

for commercial products, such as Clustrix [30], that 

separate data into slices. To conclude, PRADA resolves 

a situation, i.e., missing support for DHRs, that is 

disadvantageous to both clients and operators of cloud 

storage systems. By offering the enforcement of 

arbitrary DHRs when storing data in cloud storage 

systems, PRADA enables the use of cloud storage 

systems for a wide range of clients who previously had 
to refrain from outsourcing storage, e.g., due to 

compliance with applicable data protection legislation. 

At the same time, we empower cloud storage operators 

with a practical and efficient solution to handle 

differences in regulations and offer their services to new 

clients. 
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