
The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1876

COMPLYING WITH DATA HANDLING REQUIREMENTS IN CLOUD STORAGE

SYSTEMS
 Priti Kandewar1, S Sravanthi2, K Krishna3, D Srinivas4, Dr. Santhoshkumar5, S. Bavan kumar6

1,2,3,4,6Asst. Professor, Dept of CSE, St. Martin's Engineering College, Dulapally, Secunderabad, TS, India,
5Associ. Professor, Dept of CSE, St. Martin's Engineering College, Dulapally, Secunderabad, TS, India

ABSTRACT—In past years, cloud storage systems saw an enormous rise in usage. However, despite their
popularity and importance as underlying infrastructure for more complex cloud services, today‘s cloud storage

systems do not account for compliance with regulatory, organizational, or contractual data handling requirements by

design. Since legislation increasingly responds to rising data protection and privacy concerns, complying with data

handling requirements becomes a crucial property for cloud storage systems. We present PRADA, a practical

approach to account for compliance with data handling requirements in key-value based cloud storage systems. To

achieve this goal, PRADA introduces a transparent data handling layer, which empowers clients to request specific

data handling requirements and enables operators of cloud storage systems to comply with them. We implement

PRADA on top of the distributed database Cassandra and show in our evaluation that complying with data handling

requirements in cloud storage systems is practical in real-world cloud deployments as used for microblogging, data

sharing in the Internet of Things, and distributed email storage.

I. INTRODUCTION

NOW A DAYS, many web services outsource the

storage of data to cloud storage systems. While this

offers multiple benefits, clients and lawmakers

frequently insist that storage providers comply with

different data handling requirements (DHRs), ranging

from restricted storage locations or durations [1], [2] to

properties of the storage medium such as full disk
encryption [3], [4]. However, cloud storage systems do

not support compliance with DHRs today. Instead, the

selection of storage nodes is primarily optimized

towards reliability, availability, and performance, and

thus mostly ignores the demand for DHRs. Even worse,

DHRs are becoming increasingly diverse, detailed, and

difficult to check and enforce [5], while cloud storage

systems are becoming more versatile, spanning

different continents [6] or infrastructures [7], and even

second-level providers [8]. Hence, clients cannot ensure

compliance with DHRs when their data is outsourced to
cloud storage systems. This apparent lack of control is

not merely an academic problem. Since customers have

no influence on the treatment of their data in today‘s

cloud storage systems, a large set of customers cannot

benefit from the advantages offered by the cloud. The

Intel IT Center surveys [9] among 800 IT professionals,

that 78% of organizations have to comply with

regulatory mandates. Again, 78% of organizations are

concerned that cloud offers are unable to meet their

requirements. In consequence, 57% of organizations

actually refrain from outsourcing regulated data to the

cloud. The lack of control over the treatment of data in
cloud storage hence scares away many clients. This

especially holds for the healthcare, financial, and

government sectors [9]. Supporting DHRs enables these

clients to dictate adequate treatment of their data and

thus allows cloud storage operators to enter new

markets. Additionally, it empowers operators to

efficiently handle differences in regulations [10] (e.g.,

data protection). Although the demand for DHRs is
widely acknowledged, practical support is still severely

limited [9], [11], [12]. Related work primarily focuses

on DHRs while processing data [13], [14], [15], limits

itself to location requirements [16], [17], or treats the

storage system as a black box and tries to coarsely

enforce DHRs from the outside [12], [18], [19].

Practical solutions for supporting arbitrary DHRs when

storing data in cloud storage systems are still missing –

a situation that is disadvantageous to clients and

operators of cloud storage systems.

 Contributions.

In this paper, we present PRADA, a general key-value

based cloud storage system that offers rich and practical
support for DHRs to overcome current compliance

limitations. Our core idea is to add one layer of

indirection, which flexibly and efficiently routes data to

storage nodes according to the imposed DHRs. We

demonstrate this approach along classical key-value

stores, while our approach also generalizes to more

advanced storage systems. Specifically, we make the

following contributions:

1) We comprehensively analyze DHRs and the

challenges they impose on cloud storage systems. Our

analysis shows that a wide range of DHRs exist, which
clients and operators of cloud storage systems have to

address.

2) We present PRADA, our approach for supporting

DHRs in cloud storage systems. PRADA adds an

indirection layer on top of the cloud storage system to

store data tagged with DHRs only on nodes that fulfill

these requirements. Our design of PRADA is

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1877

incremental, i.e., it does not impair data without DHRs.

PRADA supports all DHRs that can be expressed as

properties of storage nodes as well as any combination
thereof. As we show, this covers a wide range of actual

use cases.

3) We prove the feasibility of PRADA by implementing

it for the distributed database Cassandra (we make our

implementation available [20]) and by quantifying the

costs of supporting DHRs in cloud storage systems.

Additionally, we show PRADA‘s applicability in a

cloud deployment along three real-world use cases: a

Twitter clone storing two million authentic tweets, a

distributed email store handling half a million emails,

and an IoT platform persisting 1.8 million IoT

messages.

SCOPE OF THE PROJECT

We present PRADA, a practical approach to account for

compliance with data handling requirements in key-

value based cloud storage systems. To achieve this goal,

PRADA introduces a transparent data handling layer,

which empowers clients to request specific data
handling requirements and enables operators of cloud

storage systems to comply with them. We implement

PRADA on top of the distributed database Cassandra

and show in our evaluation that complying with data

handling requirements in cloud storage systems is

practical in real-world cloud deployments as used for

micro blogging, data sharing in the Internet of Things,

and distributed email storage.

OBJECTIVE

In this paper, we present PRADA, a general key-value

based cloud storage system that offers rich and practical

support for DHRs to overcome current compliance

limitations. Our core idea is to add one layer of
indirection, which flexibly and efficiently routes data to

storage nodes according to the imposed DHRs. We

demonstrate this approach along classical key-value

stores, while our approach also generalizes to more

advanced storage systems

II. RELATED WORK

We categorize our discussion of related work by the

different types of DHRs they address. In addition, we

discuss approaches for providing assurance that DHRs

are respected. Distributing storage of data. To enforce

storage location requirements, a class of related work

proposes to split data between different storage systems.

Wuchner et al. [12] and ̈Cloud Filter [18] add proxies
between clients and operators to transparently distribute

data to different cloud storage providers according to

DHRs, while NubiSave [19] allows combining

resources of different storage providers to fulfill

individual redundancy or security requirements of

clients. These approaches can treat individual storage

systems only as black boxes. Consequently, they do not

support fine grained DHRs within the database system

itself and are limited to a small subset of DHRs. Sticky
policies. Similar to our idea of specifying DHRs, the

concept of sticky policies proposes to attach usage and

obligation policies to data when it is outsourced to

third-parties [31]. In contrast to our work, sticky

policies mainly concern the purpose of data usage,

which is primarily realized using access control. One

interesting aspect of sticky policies is their ability to

make them ―stick‖ to the corresponding data using

cryptographic measures which could also be applied to

PRADA. In the context of cloud computing, sticky

policies have been proposed to express requirements on

the security and geographical location of storage nodes
[32]. However, so far it has been unclear how this could

be realized efficiently in a large and distributed storage

system. With PRADA, we present a mechanism to

achieve this goal. Policy enforcement. To enforce

privacy policies when accessing data in the cloud,

Betge-Brezetz et al. [13] monitor ´ access of virtual

machines to shared file systems and only allow access if

a virtual machine is policy compliant. In contrast, Itani

et al. [14] propose to leverage cryptographic

coprocessors to realize trusted and isolated execution

environments and enforce the encryption of data.
Espling et al. [15] aim at allowing service owners to

influence the placement of their virtual machines in the

cloud to realize specific geographical deployments or

provide redundancy through avoiding co-location of

critical components. These approaches are orthogonal

to our work, as they primarily focus on enforcing

policies when processing data, while PRADA addresses

the challenge of supporting DHRs when storing data in

cloud storage systems. Location-based storage.

Focusing exclusively on location requirements,

Peterson et al. [16] introduce the concept of data

sovereignty with the goal to provide a guarantee that a
provider stores data at claimed physical locations, e.g.,

based on measurements of network delay. Similarly,

LoSt [17] enables verification of storage locations

based on a challenge-response protocol. In contrast,

PRADA focuses on the more fundamental challenge of

realizing the functionality for supporting arbitrary

DHRs. Controlling placement of data. Primarily

focusing on distributed hash tables, SkipNet [74]

enables control over data placement by organizing data

mainly based on string names. Similarly, Zhou et al.

[75] utilize location-based node identifiers to encode

physical topology and hence provide control over data

placement at a coarse grain. In contrast to PRADA,

these approaches need to modify the identifier of data

based on the DHRs, i.e., knowledge about the specific

DHRs of data is required to locate it. Targeting

distributed object-based storage systems, CRUSH [76]

relies on hierarchies and data distribution policies to

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1878

control placement of data in a cluster. These data

distribution policies are bound to a predefined hierarchy

and hence cannot offer the same flexibility as PRADA.
Similarly, Tenant-Defined Storage [77] enables clients

to store their data according to DHRs. However and in

contrast to PRADA, all data of one client needs to have

the same DHRs. Finally, Swift Analytics [78] proposes

to control the placement of data to speed up big data

analytics. Here, data can only be put directly on

specified nodes without the abstraction provided by

PRADA‘s approach of supporting DHRs. Hippocratic

databases. Hippocratic databases store data together

with a purpose specification [79]. This allows them to

enforce the purposeful use of data using access control

and to realize data retention after a certain period. Using
Hippocratic databases, it is possible to create an

auditing framework to check if a database is complying

with its data disclosure policies [33]. However, this

concept only considers a single database and not a

distributed setting where storage nodes have different

data handling capabilities. Assurance. To provide

assurance that storage operators adhere to DHRs, de

Oliveira et al. [80] propose an architecture to automate

the monitoring of compliance to DHRs when

transferring data. Bacon et al. [34] and Pasquier et al.

[5] show that this can also be achieved using

information flow control. Similarly, Massonet et al. [41]

propose a monitoring and audit logging architecture in

which the infrastructure provider and service provider

collaborate to ensure data location compliance. These

approaches are orthogonal to our work and could be
used to verify that operators of cloud storage systems

run PRADA in an honest way and error-free.

III. DATA COMPLIANCE IN CLOUD

STORAGE

With the increasing demand for sharing data and storing

it at external parties [22], obeying with DHRs becomes

a crucial challenge for cloud storage systems [11], [12],

[23]. To substantiate this claim, we outline our setting

and rigorously analyze existing and potentially future
DHRs. Based on this, we derive goals that must be

reached to adequately support DHRs in cloud storage

systems.

 Setting

We tackle the challenge of supporting DHR compliance

in cloud storage systems which are realized over a set of
nodes in different data centers [24]. To explain our

approach in a simple yet general setting, we assume that

data is addressed by a distinct key, i.e., a unique

identifier for each data item. Key-value based cloud

storage systems [25], [26], [27] provide a general, good

starting point, since they are widely used and their

underlying principles have been adopted in more

advanced cloud storage systems [28], [29], [30]. We

discuss how our approach can be applied to other types

of cloud storage systems in Section 11. As a basis for

our discussion, we illustrate our setting in Figure 1.

Clients (end users and companies) insert data into
Compliance with DHRs has to be realized by the

operator of the cloud storage system. Only the operator

knows about the characteristics of the storage nodes and

can thus make the ultimate decision on which node to

store a specific data item. Different works exist that

propose cryptographic guarantees [14], accountability

mechanisms [33], information flow control [5], [34], or

virtual proofs of physical reality [35] to relax trust

assumptions on the operator, i.e., providing the client

with assurance that DHRs are (strictly) adhered to. Our

goals are different: Our main aim is for functional

improvements of the status quo. Thus, these works are
orthogonal to our approach and can possibly be

combined if the operator is not sufficiently trusted.

 Data Handling Requirements

We analyze DHRs from client and operator perspective

and identify common classes, as well as the need to

support also future and unforeseen requirements. Client

perspective. DHRs involve constraints on the storage,

processing, distribution, and deletion of data in cloud
storage. These constraints follow from legal (laws and

regulations) [36], [37], contractual (standards and

specifications) [38], or intrinsic requirements (user‘s or

company‘s individual privacy requirements) [39], [40].

Especially for businesses, compliance with legal and

contractual obligations is important to avoid serious

(financial) consequences [41]. Location requirements

relate to the storage location of data. On one hand, these

requirements address concerns raised when data is

stored outside of specified legislative boundaries [2],

[11]. The EU‘s General Data Protection Regulation

[37], e.g., forbids the storage of personal data in
jurisdictions with an insufficient level of privacy

protection. Also other legislation, besides data

protection law, can impose restrictions on the storage

location. German tax legislation, e.g., forbids the

storage of tax data outside of the EU [23]. On the other

hand, clients, especially corporations, can impose

location requirements. To increase robustness against

outages, a company might demand to store replicas of

their data on different continents [39]. Furthermore, an

enterprise could require that sensitive data is not stored

at a competitor for fear of accidental leaks or deliberate
breaches [40].

 Goals

Our analysis of real-world demands for DHRs based on

legislation, business interests, and future trends

emphasizes the importance to support DHRs in

distributed cloud storage. We now derive a set of goals

that any approach that addresses this challenging

situation should fulfill: Comprehensiveness: To address

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1879

a wide range of DHRs, the approach should work with

any DHRs that can be expressed as properties of storage

nodes and support the combination of different DHRs.
In particular, it should support the requirements in

Section 2.2 and be able to adapt to new DHRs. Minimal

performance effort: Cloud storage systems are highly

optimized and trimmed for performance. Thus, the

impact of DHR support on the performance of a cloud

storage system should be minimized. Cluster balance:

In existing cloud storage systems, the storage load of

nodes can easily be balanced to increase performance.

Despite having to respect DHRs (and thus limiting the

set of possible storage nodes), the storage load of

individual storage nodes should be kept balanced.

Coexistence: Not all data will be accompanied by
DHRs. Hence, data without DHRs should not be

impaired by supporting DHRs, i.e., it should be stored

in the same way as in a traditional cloud storage system.

IV. SYSTEM OVERVIEW

The problem that has prevented support for DHRs so

far stems from the common pattern used to address data

in key-value based cloud storage systems: Data is

addressed, and hence also partitioned (i.e., distributed to

the nodes in the cluster), using a designated key. Yet,

the responsible node (according to the key) for storing a

data item will often not fulfill the client‘s DHRs. Thus,
the challenge addressed in this paper is how to realize

compliance with DHRs and still allow for key-based

data access. To tackle this challenge, the core idea of

PRADA is to add an indirection layer on top of a cloud

storage system. We illustrate how we integrate this

layer into existing cloud storage systems in Figure 2. If

a responsible node cannot comply with stated DHRs,

we store the data at a different node, called target node.

To enable the lookup of data, the responsible node

stores a reference to the target for specific data. As

shown in Figure 2, we introduce three new components
(capability, relay, and target store) to realize PRADA.

Capability store: The global capability store is used to

look up nodes that can comply with a specific DHR.

Here, the operator of the cloud storage systems

specifies for each node in the cluster which DHR

properties this node can fulfill. To speed up lookups in

the capability store, each node keeps a local copy of the

complete capability store. This approach is feasible, as

information on DHRs is comparably small and consists

of rather static information. Depending on the

individual cloud storage system, distributing this

information can be realized by pre configuring the
capability store for a storage cluster or by utilizing the

storage system itself for creating a globally replicated

view of node capabilities. We consider all DHRs that

describe static properties of a storage node and range

from rather simplistic properties such as storage

location to more advanced capabilities such as the

support for deleting data at a specific date. Relay store:

Each node operates a local relay store containing

references to data stored at other nodes. More precisely,
it contains references to data the node itself is

responsible for but does not comply with the DHRs. For

each data item, the relay store contains the key of the

data, a reference to the node at which the data is stored,

and a copy of the DHRs. Target store: Each node stores

data that is redirected to it in a target store. The target

store operates exactly as a traditional data store, but

allows a node to distinguish data that falls under DHRs

from data that does not. Alternatives to adding an

indirection layer are likely not viable for scalable key-

value based cloud storage systems: Although it is

possible to encode very short DHRs in the key used for
data access [23], this requires knowledge about DHRs

of a data item to compute the key for accessing it and

disturbs load balancing. Alternatively, replication of all

relay information on all nodes of a cluster allows nodes

to derive relay information locally. This, however,

severely impacts scalability of the cloud storage system

and reduces the total storage amount to the limited

storage space of single nodes. Integrating PRADA into

a cloud storage system requires us to adapt storage

operations (e.g., creating and updating data) and to

reconsider replication, load balancing, and failure
recovery strategies in the presence of DHRs. In the

following, we describe how we address these issues

V. CLOUD STORAGE OPERATIONS

The most important modifications of PRADA involve

the CRUD (create, read, update, delete) operations. In

the following, we describe how we integrate PRADA

into the CRUD operations of our cloud storage model

(cf. Section 2.1). We assume that queries are processed

on behalf of the client by one of the nodes in the cluster,
the coordinator node (as common in cloud storage

systems [26]). Each node of the cluster can act as

coordinator for a query and clients use the capability

store to select a coordinator that complies with the

requested DHRs. If no DHRs need to be considered,

clients select a coordinator based on performance

metrics such as proximity. For reasons of clarity, we

postpone the discussion of the impact of different

replication factors and load balancing decisions to

Section 5 and 6, respectively.

VI. REPLICATIONS

Cloud storage systems employ replication to realize

high availability and data durability [26]: Instead of

storing a data item only on one node, it is stored on r

nodes (typically, with a replication factor 1 ≤ r ≤ 3). In
key-value based storage systems, the r nodes are chosen

based on the key of data (see Section 3). When

complying with DHRs, we cannot use the same

replication strategy. In the following, we thus detail

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1880

how PRADA realizes replication instead. Creating data.

Instead of selecting only one target, the coordinator

picks r targets out of the eligible nodes. The coordinator
sends the data to all r targets and the list of all r targets

to the r responsible nodes (according to the replication

strategy of the cloud storage system). Consequently,

each of the r responsible nodes knows about all r targets

and can update its relay store accordingly.

Reading data.

To process a read request, the coordinator forwards the

read request to all responsible nodes. A responsible
node that receives a read request for data it does not

store locally looks up the targets in its relay store and

forwards the read request to one of the r target nodes.

To ensure that each target node receives a request, each

responsible node uses the same consistent mapping

between responsible and target nodes which is

computed based on node identifiers. Each target that

receives a read request sends the requested data to the

coordinator for this request. If a read query is reissued

due to a failure (cf. Section 7), each responsible node

will forward the request to all r target nodes to increase
reliability. Impact on reliability. To successfully process

a query in PRADA, it suffices if one responsible node

and one target node are reachable. Thus, PRADA can

tolerate the failure of up to r − 1 responsible nodes and

up to r − 1 target nodes.

VII. IMPLEMENTATIONS

For the practical evaluation of our approach, we fully

implemented PRADA on top of Cassandra [26] (our

implementation is available under the Apache License

[20]). Cassandra is a distributed database that is actively

employed as a key-value based cloud storage system by

more than 1500 companies with deployments of up to

75 000 nodes [53] and offers high scalability even over
multiple data centers [54], which makes it especially

suitable for our scenario. Cassandra also implements

advanced features that go beyond simple key-value

storage such as column-orientation and queries over

ranges of keys, which allows us to showcase the

flexibility and adaptability of our design. Data in

Cassandra is divided into multiple logical databases,

called key spaces. A key space consists of tables which

are called column families and contain rows and

columns. Each node knows about all other nodes and

their ranges of the hash table. Cassandra uses the
gossiping protocol Scuttlebutt [50] to efficiently

distribute this knowledge as well as to detect node

failure and exchange node state, e.g., load information.

Our implementation is based on Cassandra 2.0.5, but

our design conceptually also works with newer

versions. Information stores. PRADA relies on three

information stores: the global capability store as well as

relay and target stores (cf. Section 3). We implement

these as individual key spaces in Cassandra as detailed

in the following. First, we realize the global capability

store as a key space that is globally replicated among all

nodes (i.e., each node stores a full copy of the capability
store to improve performance of create operations)

initialized at the same time as the cluster with

deployments of up to 75 000 nodes [53] and offers high

scalability even over multiple data centers [54], which

makes it especially suitable for our scenario. Cassandra

also implements advanced features that go beyond

simple key-value storage such as column-orientation

and queries over ranges of keys, which allows us to

showcase the flexibility and adaptability of our design.

Data in Cassandra is divided into multiple logical

databases, called key spaces. A key space consists of

tables which are called column families and contain
rows and columns. Each node knows about all other

nodes and their ranges of the hash table. Cassandra uses

the gossiping protocol Scuttlebutt [50] to efficiently

distribute this knowledge as well as to detect node

failure and exchange node state, e.g., load information.

Our implementation is based on Cassandra 2.0.5, but

our design conceptually also works with newer

versions.

Information stores.

PRADA relies on three information stores: the global

capability store as well as relay and target stores (cf.

Section 3). We implement these as individual key

spaces in Cassandra as detailed in the following. First,

we realize the global capability store as a key space that

is globally replicated among all nodes (i.e., each node
stores a full copy of the capability store to improve

performance of create operations) initialized at the same

time as the cluster. On this key space, we create a

column family for each DHR type (as introduced in

Section 2.2). When a node joins the cluster, it inserts all

DHR properties it supports for each DHR type (as

locally configured by operator of the cloud storage

system) into the corresponding column family. This

information is then automatically replicated to all other

nodes in the cluster by the replication strategy of the

corresponding key space. For each regular key space of
the database, we additionally create a corresponding

relay store and target store as key spaces. Here, the

relay store inherits the replication factor and replication

strategy from the corresponding regular key space to

achieve replication for PRADA as detailed in Section 5,

i.e., the relay store will be replicated in exactly the same

way as the regular key store. Hence, for each column

family in the corresponding key space, we create a

column family in the relay key space that acts as the

relay store. We follow a similar approach for realizing

the target store, i.e., we create for each key space a

corresponding key space to store actual data. For each
column family in the original key space, we create an

exact copy in the target key space to act as the target

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1881

store. However, to ensure that DHRs are adhered to, we

implement a DHR-agnostic replication mechanism for

the target store and use the relay store to address data.
While the global capability store is created when the

cluster is initiated, relay and target stores have to be

created whenever a new key space and column family is

created, respectively. To this end, we hook into

Cassandra‘s Create Key space Statement class for

detecting requests for creating key spaces and column

families and subsequently initialize the corresponding

relay and target stores.

Creating data and load balancing
To allow clients to specify their DHRs when inserting

or updating data, we support the specification of

arbitrary DHRs in textual form for INSERT requests

(cf. Section 2.1). To this end, we add an optional postfix

WITH REQUIREMENTS to INSERT statements by

extending the grammar from which parser and lexer for

CQL3 [55], the SQL-like query language of Cassandra,

are generated using ANTLR [56]. Using the WITH

REQUIREMENTS statement, arbitrary DHRs can be

specified separated by the keyword AND, e.g., INSERT

... WITH REQUIREMENTS location = { ‘DE‘, ‘FR‘,
‘UK‘ } AND encryption = { ‘AES-256‘ }. In this

example, any node located in Germany, France, or the

United Kingdom that supports AES-256 encryption is

eligible to store the inserted data. This approach enables

users to specify any DHRs covered by our formalized

model of DHRs (cf. Section 2.2). To detect and process

DHRs in create requests (cf. Section 4), we extend

Cassandra‘s Query Processor, specifically its get

Statement method for processing INSERT requests.

When processing requests with DHRs (specified using

the WITH REQUIREMENTS statement), we base our

selection of eligible nodes on the global capability
store. Nodes are eligible to store data with a given set of

DHRs if they provide at least one of the specified

properties for each requested type (e.g., one out of

multiple permitted locations). We prioritize nodes that

Cassandra would pick without DHRs, as this speeds up

reads for the corresponding key later on, and otherwise

choose nodes according to our load balancer (cf.

Section 6). Our load balancing implementation relies on

Cassandra‘s gossiping mechanism [26], which

maintains a map of all nodes together with their

corresponding loads. We access this information using
Cassandra‘s get Load Info method and extend the load

information with local estimators for load changes.

Whenever a node sends a create request or stores data

itself, we update the corresponding local estimator with

the size of the inserted data. To this end, we hook into

the methods that are called when data is modified

locally or forwarded to other nodes, i.e., the

corresponding methods in Cassandra‘s Modification

Statement, Row Mutation Verb Handler, and Storage

Proxy classes as well as our methods for processing

requests with DHRs.

Reading data

To allow reading redirected data as described in Section

4, we modify Cassandra‘s Read Verb Handler class for

processing read requests at the responsible node. This

handler is called whenever a node receives a read
request from the coordinator and allows us to check

whether the current node holds a reference to another

target node for the requested key by locally checking

the corresponding column family within the relay store.

If no reference exists, the node continues with a

standard read operation. Otherwise, the node forwards a

modified read request to one deterministically selected

target node (cf. Section 5) using Cassandra‘s

sendOneWay method, in which it requests the data from

the respective target on behalf of the coordinator.

Subsequently, the target nodes send the data directly to

the coordinator node (whose identifier is included in the
request). To correctly resolve references to data for

which the coordinator of a query is also the responsible

node, we additionally add corresponding checks to the

Local Read Runnable subclass of Storage Proxy.

VIII. RESULTS

FIG:1 ALL USERS DETAILS

FIG 2: ACCEPT NEW FILES DETAILS

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1882

FIG 3: DELETED FILES

IX. DISCUSSION AND CONCLUSION
Accounting for compliance with data handling

requirements (DHRs), i.e., offering control over where

and how data is stored in the cloud, becomes

increasingly important due to legislative,

organizational, or customer demands. Despite these

incentives, practical solutions to address this need in

existing cloud storage systems are scarce. In this paper,

we proposed PRADA, which allows clients to specify a

comprehensive set of fine-grained DHRs and enables

cloud storage operators to enforce them. Our results

show that we can indeed achieve support for DHRs in

cloud storage systems. Of course, the additional
protection and flexibility offered by DHRs comes at a

price: We observe a moderate increase for query

completion times, while achieving constant storage

overhead and upholding a near optimal storage load

balance even in challenging scenarios. Importantly,

however, data without DHRs is not impaired by

PRADA. When a responsible node receives a request

for data without DHRs, it can locally check that no

DHRs apply to this data: For create requests, the

INSERT statement either contains DHRs or not, which

can be checked efficiently and locally. In contrast, for
read, update, and delete requests, PRADA performs a

simple and local check whether a reference to a target

node for this data exists. The overhead for this step is

comparable to executing an if statement and hence

negligible. Only if a reference exists, which implies that

the data was inserted with DHRs, PRADA induces

overhead. Our extensive evaluation confirms that, for

data without DHRs, PRADA shows the same query

completion times, storage overhead, and bandwidth

consumption as an unmodified Cassandra system in all

considered settings (indistinguishable results for
Cassandra and PRADA* in Figures 5 to 8.)

Consequently, clients can choose (even at a granularity

of individual data items), if DHRs are worth a modest

performance decrease. PRADA‘s design is built upon a

transparent indirection layer, which effectively handles

compliance with DHRs. This design decision limits our

solution in three ways. First, the overall achievable load

balance depends on how well the nodes‘ capabilities to

fulfill certain DHRs matches the actual DHRs requested

by the clients. However, for a given scenario, PRADA
is able to achieve nearly optimal load balance as shown

in Figure 10. Second, indirection introduces an

overhead of 0.5 round-trip times for reads, updates, and

deletes. Further reducing this overhead is only possible

by encoding some DHRs in the key used for accessing

data [23], but this requires everyone accessing the data

to be in possession of the DHRs, which is unlikely. A

fundamental improvement could be achieved by

replicating all relay information to all nodes of the

cluster, but this is viable only for small cloud storage

systems and does not offer scalability. We argue that

indirection can likely not be avoided, but still pose this
as an open research question. Third, the question arises

how clients can be assured that an operator indeed

enforces their DHRs and no errors in the specification

of DHRs have occurred. This has been widely studied

[16], [33], [41], [80] and the proposed approaches such

as audit logging, information flow control, and provable

data possession can also be applied to PRADA. While

we limit our approach for providing data compliance in

cloud storage to key-value based storage systems, the

key-value paradigm is also general enough to provide a

practical starting point for storage systems that are
based on different paradigms. Additionally, the design

of PRADA is flexible enough to extend (with some

more work) to other storage systems. For example,

Google‘s globally distributed database Spanner (rather a

multi-version database than a key-value store) allows

applications to influence data locality (to increase

performance) by carefully choosing keys [28]. PRADA

could be applied to Spanner by modifying Spanner‘s

approach of directory-bucketed key-value mappings.

Likewise, PRADA could realize data compliance for

distributed main memory databases, e.g., VoltDB,

where tables of data are partitioned horizontally into
shards [29]. Here, the decision on how to distribute

shards over the nodes in the cluster could be taken with

DHRs in mind. Similar adaptations could be performed

for commercial products, such as Clustrix [30], that

separate data into slices. To conclude, PRADA resolves

a situation, i.e., missing support for DHRs, that is

disadvantageous to both clients and operators of cloud

storage systems. By offering the enforcement of

arbitrary DHRs when storing data in cloud storage

systems, PRADA enables the use of cloud storage

systems for a wide range of clients who previously had
to refrain from outsourcing storage, e.g., due to

compliance with applicable data protection legislation.

At the same time, we empower cloud storage operators

with a practical and efficient solution to handle

differences in regulations and offer their services to new

clients.

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1883

REFERENCE

[1] R. Gellman, ―Privacy in the Clouds: Risks to

Privacy and Confidentiality from Cloud Computing,‖

World Privacy Forum, 2009.

[2] S. Pearson and A. Benameur, ―Privacy, Security and

Trust Issues Arising from Cloud Computing,‖ in IEEE
CloudCom, 2010.

[3] United States Congress, ―Gramm-Leach-Bliley Act

(GLBA),‖ Pub.L. 106-102, 113 Stat. 1338, 1999.

[4] D. Song et al., ―Cloud Data Protection for the

Masses,‖ Computer, vol. 45, no. 1, 2012.

[5] T. F. J. M. Pasquier et al., ―Information Flow Audit

for PaaS Clouds,‖ in IEEE IC2E, 2016.

[6] V. Abramova and J. Bernardino, ―NoSQL

Databases: MongoDB vs Cassandra,‖ in C3S2E, 2013.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros,
―InterCloud: Utility- Oriented Federation of Cloud

Computing Environments for Scaling of Application

Services,‖ in ICA3PP, 2010.

[8] D. Bernstein et al., ―Blueprint for the Intercloud -

Protocols and Formats for Cloud Computing

Interoperability,‖ in ICIW, 2009.

[9] Intel IT Center, ―Peer Research: What‘s Holding

Back the Cloud?‖ Tech. Rep., 2012.

[10] D. Catteddu and G. Hogben, ―Cloud Computing –

Benefits, Risks and Recommendations for Information

Security,‖ European Network and Information Security

Agency (ENISA), 2009.

[11] M. Henze, R. Hummen, and K. Wehrle, ―The

Cloud Needs Cross- Layer Data Handling

Annotations,‖ in IEEE S&P Workshops, 2013.

[12] T. W¨ uchner, S. M¨ uller, and R. Fischer,
―Compliance-Preserving Cloud Storage Federation

Based on Data-Driven Usage Control,‖ in IEEE

CloudCom, 2013.

[13] S. Betg´e-Brezetz et al., ―End-to-End Privacy

Policy Enforcement in Cloud Infrastructure,‖ in IEEE

CloudNet, 2013.

[14] W. Itani, A. Kayssi, and A. Chehab, ―Privacy as a

Service: Privacy-Aware Data Storage and Processing in

Cloud Computing Architectures,‖ in IEEE DASC,

2009.

[15] D. Espling et al., ―Modeling and Placement of
Cloud Services with Internal Structure,‖ IEEE

Transactions on Cloud Computing, vol. 4, no. 4, 2014.

[16] Z. N. J. Peterson, M. Gondree, and R. Beverly, ―A

Position Paper on Data Sovereignty: The Importance of

Geolocating Data in the Cloud,‖ in USENIX HotCloud,

2011.

[17] G. J. Watson et al., ―LoSt: Location Based

Storage,‖ in ACM CCSW, 2012.

[18] I. Papagiannis and P. Pietzuch, ―CloudFilter:

Practical Control of Sensitive Data Propagation to the

Cloud,‖ in ACM CCSW, 2012.

[19] J. Spillner, J. M¨ uller, and A. Schill, ―Creating

optimal cloud storage systems,‖ Future Generation

Computer Systems, vol. 29, no. 4, 2013.
[20] RWTH Aachen University, ―PRADA Source Code

Repository,‖ https://github.com/COMSYS/prada.

[21] M. Henze et al., ―Practical Data Compliance for

Cloud Storage,‖ in IEEE IC2E, 2017.

[22] P. Samarati and S. De Capitani di Vimercati, ―Data

Protection in Outsourcing Scenarios: Issues and

Directions,‖ in ACM ASIACSS, 2010.

[23] M. Henze et al., ―Towards Data Handling

Requirements-aware Cloud Computing,‖ in IEEE

CloudCom, 2013.

[24] A. Greenberg et al., ―The Cost of a Cloud:

Research Problems in Data Center Networks,‖

SIGCOMM Comput. Commun. Rev., vol. 39, no. 1,

2008.
[25] G. DeCandia et al., ―Dynamo: Amazon‘s Highly

Available Keyvalue Store,‖ in ACM SOSP, 2007.

[26] A. Lakshman and P. Malik, ―Cassandra: A

Decentralized Structured Storage System,‖ ACM

SIGOPS Operating Systems Review, vol. 44, no. 2,

2010.

[27] M. T. O¨ zsu and P. Valduriez, Principles of

Distributed Database Systems, 3rd ed. Springer, 2011.

[28] J. C. Corbett et al., ―Spanner: Google‘s Globally-

distributed Database,‖ in USENIX OSDI, 2012.

[29] M. Stonebraker and A. Weisberg, ―The VoltDB

Main Memory DBMS,‖ IEEE Data Eng. Bull., vol. 36,

no. 2, 2013.

[30] Clustrix, Inc., ―Scale-Out NewSQL Database in the
Cloud,‖ http: //www.clustrix.com/.

[31] S. Pearson and M. C. Mont, ―Sticky Policies: An

Approach for Managing Privacy across Multiple

Parties,‖ Computer, vol. 44, no. 9, 2011.

[32] S. Pearson, Y. Shen, and M. Mowbray, ―A Privacy

Manager for Cloud Computing,‖ in CloudCom, 2009.

[33] R. Agrawal et al., ―Auditing Compliance with a

Hippocratic Database,‖ in VLDB, 2004.

[34] J. Bacon et al., ―Information Flow Control for

Secure Cloud Computing,‖ IEEE Transactions on

Network and Service Management, vol. 11, no. 1, 2014.

[35] U. R¨ uhrmair et al., ―Virtual Proofs of Reality and

their Physical Implementation,‖ in IEEE S&P, 2015.

[36] United States Congress, ―Health Insurance
Portability and Accountability Act of 1996 (HIPAA),‖

Pub.L. 104–191, 110 Stat. 1936, 1996.

[37] ―Regulation (EU) 2016/679 of the European

Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the

processing of personal data and on the free movement

of such data, and repealing Directive 95/46/EC (General

Data Protection Regulation),‖ L119, 4/5/2016, 2016.

[38] PCI Security Standards Council, ―Payment Card

Industry (PCI) Data Security Standard – Requirements

http://www.clustrix.com/

The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Volume XIII, Issue XII, December/ 2021 Page No: 1884

and Security Assessment Procedures, Version 3.1,‖

2015.

[39] R. Buyya et al., ―Cloud computing and emerging

IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility,‖ Future Generation

Computer Systems, vol. 25, no. 6, 2009.
[40] T. Ristenpart et al., ―Hey, You, Get off of My

Cloud: Exploring Information Leakage in Third-party

Compute Clouds,‖ in ACM CCS, 2009.

[41] P. Massonet et al., ―A Monitoring and Audit

Logging Architecture for Data Location Compliance in

Federated Cloud Infrastructures,‖ in IEEE IPDPS

Workshops, 2011.

[42] United States Congress, ―Sarbanes-Oxley Act

(SOX),‖ Pub.L. 107–204, 116 Stat. 745, 2002.

[43] A. Mantelero, ―The EU Proposal for a General

Data Protection Regulation and the roots of the ‗right to
be forgotten‘,‖ Computer Law & Security Review, vol.

29, no. 3, 2013.

[44] H. A. J¨ager et al., ―Sealed Cloud – A Novel

Approach to Safeguard against Insider Attacks,‖ in

Trusted Cloud Computing. Springer, 2014.

[45] J. Singh et al., ―Regional clouds: technical

considerations,‖ University of Cambridge, Computer

Laboratory, Tech. Rep. UCAM-CLTR- 863, 2014.
[46] S. Pearson, ―Taking Account of Privacy when

Designing Cloud Computing Services,‖ in Proceedings

of the 2009 ICSE Workshop on Software Engineering

Challenges of Cloud Computing. IEEE, 2009.

[47] E. Barker, ―Recommendation for Key Management

– Part 1: General (Revision 4),‖ NIST Special

Publication 800-57, National Institute of Standards and

Technology, 2015.

[48] A. Corradi, L. Leonardi, and F. Zambonelli,
―Diffusive Load- Balancing Policies for Dynamic

Applications,‖ IEEE Concurrency, vol. 7, no. 1, 1999.

[49] L. Rainie and J. Anderson, ―The Future of

Privacy,‖ Pew Research Center,

http://www.pewinternet.org/2014/12/18/futureof-

privacy/, 2014.

[50] R. van Renesse et al., ―Efficient Reconciliation and

Flow Control for Anti-entropy Protocols,‖ in LADIS,
2008.

http://www.pewinternet.org/2014/12/18/futureof-

	COMPLYING WITH DATA HANDLING REQUIREMENTS IN CLOUD STORAGE SYSTEMS
	I. INTRODUCTION
	Contributions.
	SCOPE OF THE PROJECT
	OBJECTIVE
	II. RELATED WORK
	III. DATA COMPLIANCE IN CLOUD STORAGE
	Setting
	Data Handling Requirements
	Goals
	IV. SYSTEM OVERVIEW
	V. CLOUD STORAGE OPERATIONS
	VI. REPLICATIONS
	Reading data.
	VII. IMPLEMENTATIONS
	Information stores.
	Creating data and load balancing
	Reading data
	VIII. RESULTS
	FIG 2: ACCEPT NEW FILES DETAILS
	REFERENCE

